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Summary, Macroscopic properties of any elastoplastic medium with a heterogene- 

ous micro-structure are considered. Results of a rigorous general theory due to Mandel 
and Hill are argumented and re-derived in a systematic manner. Ilyushin’s postulate 

concerning the work expended in cycles of strain is also discussed from this standpoint. 

1. Prelfminarie8, A rigorous general analysis of the macroscopic properties of 
elastoplastic continua which are heterogeneous on a micro-scale, such as composites or 

polycrystals. has been initiated in recent years by Mandel Cl], Hill r2] and Rice [3]. 
Though differing markedly in scope and emphasis, the respective treatments have in com- 
mon one distinctive feature: full account is taken of the heterogeneity of the micro- 
scopic fields of stress and strain, without idealizations or assumptions (except for the 

customary approximations of small-deformation theory), Some further results obtained 
by this approach are presented here. They concern mainly the connexions and distinc- 
tions between the definitions of plastic strain-rate energy dissipations at the macroscopic 
and microscopic levels. 

We adopt Hill’s specification of a representative volume element for a macroscopic- 
ally homogeneous continuum. The virtual work principle applied to such an element 

provides a basic mean-value theorem which is used repeatedly in the general analysis. 

It states that the global volume average of the scalar product of any pair of stress and 

strain tensors is equal to the product of their separate averages, provided that the classi- 
cal equations of stress equilibrium and strain compatibility are respectively satisfied 

throughout the representative element and provided also that the associated tractions 
and displacements over its surface are macroscopically uniform. This theorem can be 
written concisely as 

(GE) =- {a; (5) (1) 
where { - . > ‘g ‘f SI m res a global average and 0 and E are symbolic notation for local 
stress and infinitesimal strain. Similar equalities hold, of course, when either tensor is 
replaced by its differential or its rate of change (translational and rotational effects 

within the element being disregarded). The precise statement and proof of (1) are due 
to Hill p, 41. 

The plastic part of a local strain is often defined fromally to be 

e - Ma (2) 

where Mis the (possibly anisotropic) fourth order tensor of elastic compliances in the 

current state. However, (2) only has a practical significance for a material that unloads 
elastically, without renewed plastic flow, during co m p le t e removal of the stress. For 

this and other reasons it is more fruitful to consider the plastic part of a d i f fe r e n t i a 1 
increment of strain: 

de - Mdo (3) 

In a metal that deforms plastically by crystallographic slip M remains constant so long 
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as the lattice geometry is undisturbed. But when nlvaries, as happens in some non-metals, 

de - llildo = d(& - No) + (d:li)o (4) 

and then (2) and (3) must be distinguished. 

According to the usual constitutive law for an elastoplastic solid the left-hand quantity 

in (4) is assumed to be directed along the outward normal to the yield surface in s t r e s s 

space. As was pointed out by Ilyushin [5], and proved in a wider context by Ilill [C;], such 

a “normality rule” is implied not only by Urucker’s arbitrary definition of material sta- 

bility but by Ilyushin’s weaker postulate that positive work is expended in any closed 

cycle of strain. By contrast, as (4) makes plain, normality of d(e - MO) is not implied 

when M varies ; see Ilyushin [7] for extended discussion. 
Along with (2) and (3) we shall subsequently consider their duals : 

and 
lJ - LE (5) 

do - Ld& (6) 

where ,% is the fourth-order tensor of elastic moduli. Evidently (6) can be interpreted 
as the stress deficit after an infinitesimal cycle of strain in which an initial plastic flow 

is followed by elastic recovery. Corresponding to (4) we now have 

do - Ldc: = d(o - LF) + (dL)E (7) 

Since L and Mare inverses an alternative expression for the right-hand side is 

- Ld (E - Ma) + (dL)Ma 

which was used by Ilyushin [5] to discuss normality with regard to the yield surface in 

strain space. 
It is convenient to note here the identity 

o(a - Jlo) + e (5 - I>?) S (a - LC)(C - 1113) (8) 

together with similar ones in the differentials of stress and strain or in their rates of 

change. The right-hand side of (8) can obviously be written as a quadratic form with 

matrix L or Nrespectively : 

- (0 - LF)dI(O - LE), or - (e - nrls)L(Z -- iW0) 

The quantity (8) is therefore always negative for actual materials (or trivially zero 
when the deformation is purely elastic). 

2. Macro8coplc ten#OrE. Each macroscopic tensor variable will be distin- 
guished from its microscopic counterpart by using anglular brackets < \ . By definition 

the macroscopic stress and strain are just their volume averages: 

‘\ ‘IS’ = {o} and <&\ = {e) (9) 

which are well known to be directly calculable in terms of the surface tractions and dis- 
placements. On the other hand, 

(L; #{L} and (fir; #(Al) 

when the material is elastically heterogeneous. Mean-value formulae for the macro- 
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scopic moduli and compliances can, however, be obtained as follows. 
Let T and ?l he the microscopic stress and strain in an imagined a 1 1 - e 1 as t i c state. 

The existence vf a microscopic potential energy is assumed, so that I!J and M have dia- 
gonal symmetry when their components are arranged as 9 x 9 matrices in the customary 
way; see [8] for example. Let A and B be the fourth-order “concentration factor” ten- 

sors such that 
rl = A (rl>Y ‘t = B (7: (10) 

for a considered type of heterogeneity. Tensors A and B were introduced and used ex- 
tensively by Hill p, 41; 13 was also mentioned in passing by Mandel. A and B are, in 
principle,uniquely determinate functions ofposition throughout the representative element 

(whose shape Inay without loss of generality be supposed a cube). To be precise we 
should exclude a negligible surface layer which is affected by microscopic differences 
in any macro-uniform boundary data producing the same average stress and strain. Now 

7 --_ Lr], (7) = {Ly} = (L) (q); ‘1 = MT,(q) = {MT} = (M) CT) (11) 

and so 
(L) = {LA], (M) = {MB} (1’2) 

are the required formulae for the macroscopic moduli and compliances. 
As remarked in [4), further consequences of DO) and (11) are the equivalent connex- 

ions 
A( M) = MB, B(L) = LA (13) 

between the concentration-factor functions. (For example, the second relation follows 
by expressing z ip the alternative ways LA(q) and B<L) (11) ). The 9x9 matrix 

representations of >, L> and (M) have diagonal symmetry [2, 41, since the differential 

form (T) d (+rj) is integrable in view of (1) and the assumed integrability of ~dq 
everywhere. On the other hand, the matrix representations of A and B are not symmet- 

ric in general, so their transposes will be distinguished by the notation A’ and B’. 
Consider, next, the application of theorem (1) to the scalar products 07 and a&. With 

the help of (10) there follows 

{oAI (r) = (0) <r:, {EB} (1) = (E) (~6) 

for arbitrary (q) and (‘t) respectively. Thus 

{A’a} = (a>, {B’E} = (E) (14) 

for any self-equilibrated field of stress and any kinematically compatible field of strain, 
provided each can be generated by macro-uniform boundary data. Still considering the 
same scalar products, we can transform them differently to extract further information: 

{&LA} (qi = {eL7] = (E) (L> qq), {oMB) (T> = {~MT). =- 

= (0) (M) (Z) (13 

for arbitrary (7) and (-c) . Hence 

{.A’LE} = (L) (&>, {B’Mo) = (M) (0) (16) 

Alternatively, these can be derived by combining the transpose of (13) with (14). 

Finally, by subtracting (16) from (14) : 

{A’@ - LE)} = (0) - (L) ;E), {B’(E ---hIa)) = (E: - (M) (6) (17) 
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when the representative element is partly plastic. These equations are essentially equi- 
valent, since each can be derived from the other by means of (13). 

In all the preceding formulae it is of course permissible to replace stress and strain 
by their differentials or by their rates of change. By reference to the quantities (2) and 

(3), and to their duals (5) and (6), we see that (17) expresses their macroscopic values in 

terms of we i g h t e d averages of their microscopic distributions. It is remarkable that, 
regardless of the character and extent of the internal plastic flow, the appropriate weight- 
ing functions A’and B’are calculable by elastic theory alone. 

Some authors, for example Lin and Ito [9] and Havner DO], have de fined the mac- 
roscopic plastic strain as a simple u n w e i g h t e d average of its microscopic distribu- 

tion. But ill/I o} is not equal to (M) to in general, unless the distribution of J?[ is 
homogeneous or a is an elastic field. Consequently, such a definition has in general no 

operational significance. That is, it does not correspond to the actual experimental pro- 
cedure of unloading a representative element by suitably altering the tractions applied 

to its surface. 

3. Mocro,copfc 1ca18r). We turn now to quantities having the character of 

energy or work, either actual or virtual. 

To begin with, consider the positive-definite quadratic forms 

1’ :~: l/?(E ~- r1) I, (e - q), M/ z ii, (cr -r) M (0 - T) (18) 

where 11 and ‘c are elastic fields, as in (lo), but now such that <qi : (;&j and (r) : 
= (0). The global averages, {v> and (kv} , can be interpreted as the residual elastic 
energies in the representative element after removal of the macroscopic strain /E:‘ and 
macroscopic stress (b) respectively (provided that this removal is imagined to be a 
perfectly elastic process). We recall the elementary formulae 

2{Vj. ~= {EL&) - e; CL, ,E,,, 2{W> : {aMa) - lo) (A!!: (a, (19) 

whose analogues for elastic continua under general loading are well known (more espe- 
cially in connexion with the classical extremum principles). To prove (19) note that 

Lil is a self-equilibrated field of stress while &?T is a kinematically compatible field 

of strain. Then (18) can be reduced to 

2 (V) :- ((c - 11) Lc}, 2{kV} :=~ (((5 - T).lir(T} 

with the help of (1). and then to (19) by relations similar to (11). 
Taking the differentials of expressions (19) we obtain 

d(V) {ddr) - P ‘f, rl,e;x, d {Iv} {CrMda} --- (‘0‘ ,‘M) cl (cr cm 

assuming that L and I%I do not vary. Re-written, again with the help of(l), in a form 
suited to elastoplastic continua, (20) becomes 

e, (d o --- L/d e;,) - {e (da - Lde)} d{V) 

‘5 (U! E, - <Al>d Lo;) - (CT (de - Il/ldo)} == d(W) (21) 

The macroscopic and microscopic measures of the plastic work in an increment of 
strain are thereby explicitly distinguished 111. 

More precisely. when reckoned from the virgin elastic state of a representative element, 
the t o t a 1 macroscopic plastic work always exceeds the tot a 1 microscopic plastic 
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work. This excess is equal to the final value of the residual elastic energy {W}. How- 
ever, even if the microscopic plastic work increases monotonically (supposing a perpet- 
ually positive rate of energy dissipation in the micro-constituants), the macroscopic plas- 
tic work may nevertheless fluctuate and temporarily decrease. For example, as remarked 
in @I, the macroscopic plastic work-rate in a uniaxial tension test is n e g a t i v e during 

that part of a hysteresis loop where reversed plastic flow occurs before the tensile load 
has been completely removed. This type of hysteresis loop is, of course, often observed 

in tests on polycrystalline metals. 
Next we compare vi r t u a 1 work-rates of the microscopic and macroscopic levels. 

In analogy to (15) we have 

{q*Lde} = (q*> (L) d !E), {+Mdo} = CT*) (M)d (0) 

where t* and q* are any elastic fields of stress and strain respectively. Immediate 

consequences are ir* (do - Ld&)} = (VI*: (d(a) - (L) d (8)) 

{x*(de - Mdo)) = (T*> (d (E) - CM) d (ai) 
(22) 

Apart from sign these equations are identical on account of (11). Various versions of 
them can be found in fl, 2. 31. 

Now q* = A (q*.) and ‘c * = B (T*) , as in (10). Since these fields are arbitrary, 

the differential analogues of (17) can be recovered from (22). Suppose, on the other hand, 

that the field r.* is regarded as the act u a 1 (infinitesimal) change in stress during 
(partial) elastic unloading from the state 6. Then (22) becomes a statement that micro- 

normality implies macro-normality (both sides of the equation being non-positive). 
This fundamental result was derived independently by Mandel and Hill. 

A general comparison of the virtual plastic work-rate at the microscopic and macro- 

scopic levels was also undertaken by Mandel. His analysis may be re-phrased as follows. 
Consider the difference 

(o*> (d(e) - Md (a)) - (o*(de - Mdcr)} (23) 

where rs* is any self-equilibrated field of stress. By (1) this difference reduces to 

{o*Mda) - (a*) (M)d(o) 
which can be converted either 

{Co* - r*) Mdo} or (o*M(do - dz)} 

where r* and dt are elastic fields of stress under co* > and d (a) respectively. From 
the foregoing quantities we subtract respectively the expressions 

{Co.* - T*)MdT} and {-c*M(do - dT)) 

which are both in fact zero. (In each product the bracketed factor is a self-equilibrated 
field of stress with a null average, while the other factor is a kinematically compatible 
field of strain). The result by either route is 

{Co* - z*)M(do - dr)} (24) 

The reduction of (23) to (24) is Mandel’s formula. Its dual may be proved similarly, 

and states that the difference 

(E*) (d(b) - <L) d,:e;) - (e*(& -- Lde)} (25) 



26 I:. iii11 

is equal to 
J((E’* --- q”)L(dc -- ;l!l)} (26) 

By specializing Mandel”s general formula and its dual in appropriate ways all the 

earlier results can be regained. Thus, the choice 0” =m o (with T* T necessarily) 
in (‘23) and 124) reproduces the second equation (21); likewise e* =-: E (with %I* 2 71 
necessarily) in (25) and (26) reproduces the first equation (21). On the other hand,‘the 

choice a* = r* returns to (22); naturally E* = .rl* has the same effect. 

By taking 6% proportional to da (and t.” proportional to dr) Mandel also obtained 

a new result: 
(1 :a; (d <~I?, - <Jr, d ,(o;) - (‘lc(dt: .- :Vdo)\ 

(27) 
1 { (& - dT),li(fhS -- dT): 

Its dual is 
d <F>. (rl <o, - (L> rl <e;.) - ~~~~~~~ - I,dYff ; 

{(cfe - (51) I, (dt: - cil])j (28) 

Equations (27) and (28) could of course be derived directly from the differential ana- 

logues of (19). 
Now do + dr and dt: L/Z d11, unless the deformation is purely elastic. Consequently, 

from (27) and (28). (I! +) (d (a\, - <;rl;d /G,) 1,. f&f& - Mdo)) 

(-j (6; ((j .:a;, - <f,>d ‘8)) >. {de(ds - ride); 
(29) 

whenever incremental plastic deformations occur. An independent direct proof was given 
in l2-J. We can infer immediateiy that, if 

da (dc - Mds) )- 0 

for every micro-constituent, then 

(30) 

d <5) (d <E> - <;w;ci <cl;,) I>-. 0 (31) 

As emphasized in @I, this last in e q u a 1 i t y applies even when the e q u a 1 i t y in 
(30) holds throughout the representative element, That is to say (assuming the normality 
rule), an a p p are n t macroscopic hardening would be observed, because of the hetero- 

geneity, even when the micro-constituents did 11 o t harden. 
By the differential analogues of (8) for the microscopic and macroscopic variables it 

can be concluded that (30) implies not only 

but also 
&(&s - Ltle) < 0 (32) 

d (e> fd !oj - CL) d <F>) < 0 (331 

On the other hand, nothing can be decided from the second of (29) as to whether (32) 
by itself implies (33). Indeed (32) merely leads to 

cf Co; d ,le; < {de (ME)] 

which can be carried no farther because 

~dE(~,d~)~ 2 d (E: (IL> d :c:) 

by analogy with the first of (19). 
Now (32) and (33) would be consequences of asserting Ilyushin’s postulate at the mic- 

roscopic and macroscopic levels respectively (applied, in particular, to an infinitesimal 
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cycle of strain starting from a p 1 as t i c state of stress). On the other hand, Ilyushin’s 
postulate does not suffice for (30) and (31) (though Drucker’s does, as is well known). 
These facts prompt an interesting basic question: namely, whether any relation exist 
between the microscopic and macroscopic forms of Ilyushin’s postulate and, in particular, 

whether the two forms are even always mutually compatible. Needless to say, this ques- 
tion does not admit an easy answer, since a cycle of macroscopic strain is by no means 

necessarily accompanied by cycles of strain in all the micro-constituents. 
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